Slowing DNA translocation in a solid-state nanopore.
نویسندگان
چکیده
Reducing a DNA molecule's translocation speed in a solid-state nanopore is a key step toward rapid single molecule identification. Here we demonstrate that DNA translocation speeds can be reduced by an order of magnitude over previous results. By controlling the electrolyte temperature, salt concentration, viscosity, and the electrical bias voltage across the nanopore, we obtain a 3 base/micros translocation speed for 3 kbp double-stranded DNA in a 4-8 nm diameter silicon nitride pore. Our results also indicate that the ionic conductivity inside such a nanopore is smaller than it is in bulk.
منابع مشابه
Dynamics of DNA translocation in a solid-state nanopore immersed in aqueous glycerol.
Nanopore-based technologies have attracted much attention recently for their promising use in low-cost and high-throughput genome sequencing. To achieve single-base resolution of DNA sequencing, it is critical to slow and control the translocation of DNA, which has been achieved in a protein nanopore but not yet in a solid-state nanopore. Using all-atom molecular dynamics simulations, we invest...
متن کاملSlowing down DNA translocation through a nanopore in lithium chloride.
The charge of a DNA molecule is a crucial parameter in many DNA detection and manipulation schemes such as gel electrophoresis and lab-on-a-chip applications. Here, we study the partial reduction of the DNA charge due to counterion binding by means of nanopore translocation experiments and all-atom molecular dynamics (MD) simulations. Surprisingly, we find that the translocation time of a DNA m...
متن کاملSolid-state nanopore channels with DNA selectivity.
Solid-state nanopores have emerged as possible candidates for next-generation DNA sequencing devices. In such a device, the DNA sequence would be determined by measuring how the forces on the DNA molecules, and also the ion currents through the nanopore, change as the molecules pass through the nanopore. Unlike their biological counterparts, solid-state nanopores have the advantage that they ca...
متن کاملControlled Reverse Translocation of DNA Through a Solid - State
Submitted for the MAR10 Meeting of The American Physical Society Controlled Reverse Translocation of DNA Through a Solid-State Nanopore1 PAUL WEINGER, VENKAT BALAGURUSAMY, SUNGCHEOL KIM, XINSHENG SEAN LING, Brown University — Reverse DNA translocation [1] is a process in which a DNA is pulled out of a nanopore against the forward electric force. In this process, the effective diffusion constant...
متن کاملSlowing the translocation of double-stranded DNA using a nanopore smaller than the double helix.
It is now possible to slow and trap a single molecule of double-stranded DNA (dsDNA), by stretching it using a nanopore, smaller in diameter than the double helix, in a solid-state membrane. By applying an electric force larger than the threshold for stretching, dsDNA can be impelled through the pore. Once a current blockade associated with a translocating molecule is detected, the electric fie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 5 9 شماره
صفحات -
تاریخ انتشار 2005